
                           Communicating to the Outside World: 
Cluster Networking 

  Th is online section describes the networking hardware and soft ware used to 
connect the nodes of cluster together. As there are whole books and courses just on 
networking, this section only introduces the main terms and concepts. While our 
example is networking, the techniques we describe apply to storage controllers and 
other I/O devices as well. 

 Ethernet has dominated local-area networks for decades, so it is not surprising 
that clusters primarily rely on Ethernet as the cluster interconnect. It became 
commercially popular at 10 Megabits per second link speed in the 1980s, but 
today 1 Gigabit per second Ethernet is standard and 10 Gigabit per second is being 
deployed in datacenters.  Figure 6.9.1    shows a network interface card (NIC) for 10 
Gigabit Ethernet. 

     Computers off er high-speed links to plug in fast I/O devices like this NIC. While 
there used to be separate chips to connect the microprocessor to the memory and 
high-speed I/O devices, thanks to   Moore’s Law   these functions have been absorbed 
into the main chip in recent off erings like Intel’s Sandy Bridge. A popular high-
speed link today is  PCIe , which stands for  Peripheral Component Interconnect 
Express . It is called a  link  in that the basic building block, called a  serial lane , 
consists of only four wires: two for receiving data and two for transmitting data. 
Th is small number contrasts with an earlier version of PCI that consisted of 64 
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 FIGURE 6.9.1      The NetFPGA 10-Gigabit Ethernet card (see  http://netfpga.org/ ), which 
connects up to four 10-Gigabit/sec Ethernet links. It is an FPGA-based open platform for 
network research and classroom experimentation.     Th e DMA engine and the four “MAC chips” 
in  Figure 6.9.2  are just portions of the Xilinx Virtex FPGA in the middle of the board. Th e four PHY chips 
in  Figure 6.9.2  are the four black squares just to the right of the four white rectangles on the left  edge of the 
board, which is where the Ethernet cables are plugged in.    
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wires, which was called a  parallel bus . PCIe allows anywhere from one to 32 lanes 
to be used to connect to I/O devices, depending on its needs. Th is NIC uses PCI 
1.1, so each lane transfers at 2 Gigabits/second. 

 Th e NIC in  Figure 6.9.1  connects to the host computer over an eight-lane PCIe 
link, which off ers 16 Gigabits/second in both directions. To communicate, a NIC 
must both send or transmit messages and receive them, oft en abbreviated as TX 
and RX, respectively. For this NIC, each 10     G link uses separate transmit and receive 
queues, each of which can store two full-length Ethernet packets, used between the 
Ethernet links and the NIC.  Figure 6.9.2    is a block diagram of the NIC showing the 
TX and RX queues. Th e NIC also has two 32-entry queues for transmitting and 
receiving between the host computer and the NIC. 

 To give a command to the NIC, the processor must be able to address the device 
and to supply one or more command words. In   memory-mapped I/O  , portions of 
the address space are assigned to I/O devices. During initialization (at boot time), 
PCIe devices can request to be assigned an address region of a specifi ed length. 
All subsequent processor reads and writes to that address region are forwarded 
over PCIe to that device. Reads and writes to those addresses are interpreted as 
commands to the I/O device. 

   For example, a write operation can be used to send data to the network interface 
where the data will be interpreted as a command. When the processor issues the 
address and data, the memory system ignores the operation because the address 
indicates a portion of the memory space used for I/O. Th e NIC, however, sees the 
operation and records the data. User programs are prevented from issuing I/O 
operations directly, because the OS does not provide access to the address space 
assigned to the I/O devices, and thus the addresses are protected by the address 
translation. Memory-mapped I/O can also be used to transmit data by writing or 
reading to select addresses. Th e device uses the address to determine the type of 
command, and the data may be provided by a write or obtained by a read. In any 
event, the address encodes both the device identity and the type of transmission 
between processor and device. 

    memory-mapped 
I/O          An I/O scheme in 
which portions of the 
address space are assigned 
to I/O devices, and reads 
and writes to those 
addresses are interpreted 
as commands to the I/O 
device.   
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 FIGURE 6.9.2      Block diagram of the NetFPGA Ethernet card in  Figure 6.9.1  showing the 
control paths and the data paths.     Th e control path allows the DMA engine to read the status of the 
queues, such as empty vs. on-empty, and the content of the next available queue entry. Th e DMA engine also 
controls port multiplexing. Th e data path simply passes through the DMA block to the TX/RX queues or 
to main memory. Th e “MAC chips” are described below. Th e PHY chips, which refer to the physical layer, 
connect the “MAC chips” to physical networking medium, such as copper wire or optical fi ber.    
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 While the processor could transfer the data from the user space into the I/O 
space by itself, the overhead for transferring data from or to a high-speed network 
could be intolerable, since it could consume a large fraction of the processor. Th us, 
computer designers long ago invented a mechanism for offl  oading the processor and 
having the device controller transfer data directly to or from the memory without 
involving the processor. Th is mechanism is called   direct memory access   (DMA). 

   DMA is implemented with a specialized controller that transfers data between 
the network interface and memory independent of the processor, and in this case 
the DMA engine is inside the NIC. 

 To notify the operating system (and eventually the application that will receive 
the packet) that a transfer is complete, the DMA sends an  I/O interrupt .

    An I/O interrupt is just like the exceptions we saw in   Chapters 4 and 5              , with two 
important distinctions:

   1.     An I/O interrupt is asynchronous with respect to the instruction execution. 
Th at is, the interrupt is not associated with any instruction and does not 
prevent the instruction completion, so it is very diff erent from either page fault 
exceptions or exceptions such as arithmetic overfl ow. Our control unit needs 
only to check for a pending I/O interrupt at the time it starts a new instruction.  

  2.     In addition to the fact that an I/O interrupt has occurred, we would like to 
convey further information, such as the identity of the device generating 
the interrupt. Furthermore, the interrupts represent devices that may have 
diff erent priorities and whose interrupt requests have diff erent urgencies 
associated with them.  

   To communicate information to the processor, such as the identity of the device 
raising the interrupt, a system can use either vectored interrupts or an exception 
identifi cation register, called the Exception Syndrome Register or ESR in LEGv8 
(see  Section 4.9 ). When the processor recognizes the interrupt, the device can 
send either the vector address or a status fi eld to place in the Cause register. As 
a result, when the OS gets control, it knows the identity of the device that caused 
the interrupt and can immediately interrogate the device. An interrupt mechanism 
eliminates the need for the processor to keep checking the device and instead 
allows the processor to focus on executing programs. 

  The Role of the Operating System in Networking 
 Th e operating system acts as the interface between the hardware and the program 
that requests I/O. Th e network responsibilities of the operating system arise from 
three characteristics of networks:

   1.     Multiple programs using the processor share the network.  

  2.     Networks oft en use interrupts to communicate information about the 
operations. Because interrupts cause a transfer to kernel or supervisor mode, 
they must be handled by the operating system (OS).  

    direct memory access 
(DMA)          A mechanism 
that provides a device 
controller with the ability 
to transfer data directly 
to or from the memory 
without involving the 
processor.   
    interrupt-driven 
I/O          An I/O scheme that 
employs interrupts to 
indicate to the processor 
that an I/O device needs 
attention.   
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  3.     Th e low-level control of a network is complex, because it requires managing 
a set of concurrent events and because the requirements for correct device 
control are oft en very detailed.    

      Th ese three characteristics of networks specifi cally and I/O systems in general lead 
to several diff erent functions the OS must provide:

   ■     Th e OS guarantees that a user’s program accesses only the portions of an I/O 
device to which the user has rights. For example, the OS must not allow a 
program to read or write a fi le on disk if the owner of the fi le has not granted 
access to this program. In a system with shared I/O devices, protection could 
not be provided if user programs could perform I/O directly.  

  ■     Th e OS provides abstractions for accessing devices by supplying routines that 
handle low-level device operations.  

  ■     Th e OS handles the interrupts generated by I/O devices, just as it handles the 
exceptions generated by a program.  

  ■     Th e OS tries to provide equitable access to the shared I/O resources, as well 
as schedule accesses to enhance system throughput.  

   Th e soft ware inside the operating system that interfaces to a specifi c I/O device 
like this NIC is called a   device driver  . Th e driver for this NIC follows fi ve steps 
when transmitting or receiving a message.  Figure 6.9.3    shows the relationship of 
these steps as an Ethernet packet is sent from one node of the cluster and received 
by another node in the cluster.     

    device driver          A program 
that controls an I/O device 
that is attached to the 
computer.   

Hardware/
Software 
Interface

   First, the transmit steps:

   1.     Th e driver fi rst prepares a packet buff er in host memory. It copies a packet 
from the user address space into a buff er that it allocates in the operating 
system address space.  

  2.     Next, it “talks” to the NIC. Th e driver writes an  I/O descriptor  to the 
appropriate NIC register that gives the address of the buff er and its length.  

  3.     Th e DMA in the NIC next copies the outgoing Ethernet packet from the host 
buff er over PCIe.  

  4.     When the transmission is complete, the DMA interrupts the processor to 
notify the processor that the packet has been successfully transmitted.  

  5.     Finally, the driver de-allocates the transmit buff er.  
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   Next, the receive steps:

   1.     First, the driver prepares a packet buff er in host memory, allocating a new 
buff er in which to place the received packet.  

  2.     Next, it “talks” to the NIC. Th e driver writes an I/O descriptor to the 
appropriate NIC register that gives the address of the buff er and its length.  

  3.     Th e DMA in the NIC next copies the incoming Ethernet packet over PCIe 
into the allocated host buff er.  

  4.     When the transmission is complete, the DMA interrupts the processor to 
notify the host of the newly received packet and its size.  

  5.     Finally, the driver copies the received packet into the user address space.  

   As you can see in  Figure 6.9.3 , the fi rst three steps are time-critical when transmitting 
a packet (since the last two occur aft er the packet is sent), and the last three steps 
are time-critical when receiving a packet (since the fi rst two occur before a packet 
arrives). However, these non-critical steps must be completed before individual 
nodes run out of resources, such as memory space. Failure to do so negatively 
aff ects network performance. 
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 FIGURE 6.9.3      Relationship of the fi ve steps of the driver when transmitting an Ethernet 
packet from one node and receiving that packet on another node.    
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   Improving Network Performance 
 Th e importance of networking in clusters means it is certainly worthwhile to try to 
improve performance. We show both soft ware and hardware techniques. 

 Starting with soft ware optimizations, one performance target is reducing the 
number of times the packet is copied, which you may have noticed happening 
repeatedly in the fi ve steps of the driver above. Th e  zero-copy  optimization allows 
the DMA engine to get the message directly from the user program data space 
during transmission and be placed where the user wants it when the message is 
received, rather than go through intermediary buff ers in the operating system 
along the way. 

 A second soft ware optimization is to cut out the operating system almost entirely 
by moving the communication into the user address space. By not invoking the 
operating system and not causing a context switch, we can reduce the soft ware 
overhead considerably. 

 In this more radical scenario, a third step would be to drop interrupts. One 
reason is that modern processors normally go into lower power mode while 
waiting for an interrupt, and it takes time to come out of low power to service the 
interrupt as well for the disruption to the pipeline, which increases latency. Th e 
alternative to interrupts is for the processor to periodically check status bits to see 
if I/O operation is complete, which is called   polling  . Hence, we can require the user 
program to poll the NIC continuously to see when the DMA unit has delivered a 
message, and as a side eff ect the processor does not go into low-power mode. 

   Looking at hardware optimizations, one potential target for improvement is 
in calculating the values of the fi elds of the Ethernet packet. Th e 48-bit Ethernet 
address, called the  Media Access Control address  or  MAC address , is a unique 
number assigned to each Ethernet NIC. To improve performance, the “MAC 
chip”—actually just a portion of the FPGA on this NIC—calculates the value for 
the preamble fi elds and the CRC fi eld (see  Section 5.5 ). Th e driver is left  with 
placing the MAC destination address, MAC source address, message type, the 
data payload, and padding if needed. (Ethernet requires that the minimum packet, 
including the header and CRC fi elds but not the preamble, be 64 bytes.) Note that 
even the least expensive Ethernet NICs do CRC calculation in hardware today. 

 A second hardware optimization, available on the most recent Intel processors 
such as Ivy Bridge, improves the performance of the NIC with respect to the memory 
hierarchy.  Direct Data IO (DDIO)  allowing up to 10% of the last-level cache is used 
as a fast scratchpad for the DMA engine. Data are copied directly into the last-level 
cache rather than to DRAM by the DMA, and only written to DRAM upon eviction 
from the cache. Th is optimization helps with latency, but also with bandwidth; some 
memory regions used for control might be written by the NIC repeatedly, and these 
writes no longer need to go to DRAM. Th us, DDIO off ers benefi ts similar to those 
of a write back cache versus a write through cache ( Chapter 5 ). 

 Let’s look at an object store that follows a client-server architecture and uses most 
of the optimizations above: zero copy messaging, user space communication, polling 
instead of interrupts, and hardware calculation of preamble and CRC. Th e driver 

    polling          Th e process of 
periodically checking the 
status of an I/O device 
to determine the need to 
service the device.   
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operates in user address space as a library that the application invokes. It grants this 
application exclusive and direct access to the NIC. All of the I/O register space on the 
NIC is mapped into the application, and all of the driver state is kept in the application. 
Th e OS kernel doesn’t even see the NIC as such, which avoids the overheads of context 
switching, the standard kernel network soft ware stack, and interrupts. 

  Figure 6.9.4    shows the time to send an object from one node to another. It varies 
from about 9.5 to 12.5 microseconds, depending on the size of the object. Here is 
the time for each step in microseconds:

    0.7 – for the client “driver” (library) to make the request (Driver TX in    Figure 6.9.4   ).   

   6.4 to 8.7 – for the NIC hardware to transmit the client’s request over the PCIe bus 
to the Ethernet, depending on the size of the object (NIC TX).   

   0.02 – to send object over the 10     G Ethernet (Time of Flight). Th e time of fl ight 
is limited by speed of light to 5     ns per meter. Th e three-meter cables used in this 
measurement mean the time of fl ight is 15     ns, which is too small to be clearly visible 
in the fi gure.   
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 FIGURE 6.9.4      Time to send an object broken into transmit driver and NIC hardware time 
vs. receive driver and NIC hardware time.     NIC transmit time is much larger than the NIC receive 
time because transmit requires more PCIe round-trips. Th e NIC does PCIe reads to read the descriptor and 
data, but on receive the NIC does PCIe writes of data, length of data, and interrupt. PCIe reads incur a round 
trip latency because NIC waits for the reply, but PCIe writes require no response because PCIe is reliable, so 
PCIe writes can be sent back-to-back.    
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   1.8 to 2.5 – for the NIC hardware to receive the object, depending on its size 
(NIC RX).   

   0.6 – for the server “driver” to transmit the message with the requested object to 
the app (Driver RX).   

   Now that we have seen how to measure the performance of network at a low 
level of detail, let’s raise the perspective to see how to benchmark multiprocessors 
of all kinds with much higher-level programs.

    Elaboration        There are three versions of PCIe. This NIC uses PCIe 1.1, which transfers 
at 2 gigabits per second per lane, so this NIC transfers at up to 16 gigabits per second 
in each direction. PCIe 2.0, which is found on most PC motherboards today, doubles 
the lane bandwidth to 4 gigabits per second. PCIe 3.0 doubles again to 8 gigabits per 
second, and it is starting to be found on some motherboards. We applaud the standard 
committee’s logical rate of bandwidth improvement, which has been about 2 version number  
gigabits/second. The limitations of the Virtex 5 FPGA prevented the NIC from using 
faster versions of PCIe. 

        Elaboration        While Ethernet is the foundation of cluster communication, clusters 
commonly use higher-level protocols for reliable communication. Transmission Control 
Protocol and Internet Protocol (TCP/IP), although invented for planet-wide communication, 
is often used inside a warehouse-scale computer, due in part to its dependability. While 
IP makes no delivery guarantees in the protocol, TCP does. The sender keeps the packet 
sent until it gets the acknowledgment message back that it was received correctly from 
the receiver. The receiver knows that the message was not corrupted along the way, by 
double-checking the contents with the TCP CRC fi eld. To ensure that IP delivers to the right 
destination, the IP header includes a checksum to make sure the destination number 
remains unchanged. The success of the Internet is due in large part to the elegance 
and popularity of TCP/IP, which allows independent local-area networks to communicate 
dependably. Given its importance in the Internet and in clusters, many have accelerated 
TCP/IP, using techniques like those listed in this section [Regnier, 2004]. 

        Elaboration        Adding DMA is another path to the memory system—one that does not 
go through the address translation mechanism or the cache hierarchy. This difference 
generates some problems both in virtual memory and in caches. These problems are 
usually solved with a combination of hardware techniques and software support. The 
diffi culties in having DMA in a virtual memory system arise because pages have both 
a physical and a virtual address. DMA also creates problems for systems with caches, 
because there can be two copies of a data item: one in the cache and one in memory. 
Because the DMA issues memory requests directly to the memory rather than through 
the processor cache, the value of a memory location seen by the DMA unit and the 
processor may differ. Consider a read from a NIC that the DMA unit places directly 
into memory. If some of the locations into which the DMA writes are in the cache, the 
processor will receive the old value when it does a read. Similarly, if the cache is write-
back, the DMA may read a value directly from memory when a newer value is in the 
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cache, and the value has not been written back. This is called the  stale data problem  or 
coherence problem (see  Chapter 5 ). Similar solutions for coherence are used with DMA. 

        Elaboration        Virtual Machine support clearly can negatively impact networking 
performance. As a result, microprocessor designers have been adding hardware 
to reduce the performance overhead of virtual machines for networking in particular 
and I/O in general. Intel offers  Virtualization Technology for Directed I/O  ( VT-d ) to help 
virtualize I/O. It is an I/O memory management unit that enables guest virtual machines 
to directly use I/O devices, such as Ethernet. It supports  DMA remapping , which allows 
the DMA to read or write the data directly in the I/O buffers of the guest virtual machine, 
rather than into the host I/O buffers and then copy them into the guest I/O buffers. It 
also supports  interrupt remapping , which lets the virtual machine monitor route interrupt 
requests directly to the proper virtual machine.          

      Two options for networking are using interrupts or polling, and using DMA or 
using the processor via load and store instructions.

   1.     If we want the lowest latency for small packets, which combination is likely 
best?  

  2.     If we want the lowest latency for large packets, which combination is likely 
best?      

Check 
Yourself




