
 Communicating to the Outside World:
Cluster Networking

 Th is online section describes the networking hardware and soft ware used to
connect the nodes of cluster together. As there are whole books and courses just on
networking, this section only introduces the main terms and concepts. While our
example is networking, the techniques we describe apply to storage controllers and
other I/O devices as well.

 Ethernet has dominated local-area networks for decades, so it is not surprising
that clusters primarily rely on Ethernet as the cluster interconnect. It became
commercially popular at 10 Megabits per second link speed in the 1980s, but
today 1 Gigabit per second Ethernet is standard and 10 Gigabit per second is being
deployed in datacenters. Figure 6.9.1 shows a network interface card (NIC) for 10
Gigabit Ethernet.

 Computers off er high-speed links to plug in fast I/O devices like this NIC. While
there used to be separate chips to connect the microprocessor to the memory and
high-speed I/O devices, thanks to Moore’s Law these functions have been absorbed
into the main chip in recent off erings like Intel’s Sandy Bridge. A popular high-
speed link today is PCIe , which stands for Peripheral Component Interconnect
Express . It is called a link in that the basic building block, called a serial lane ,
consists of only four wires: two for receiving data and two for transmitting data.
Th is small number contrasts with an earlier version of PCI that consisted of 64

6.9

 FIGURE 6.9.1 The NetFPGA 10-Gigabit Ethernet card (see http://netfpga.org/), which
connects up to four 10-Gigabit/sec Ethernet links. It is an FPGA-based open platform for
network research and classroom experimentation. Th e DMA engine and the four “MAC chips”
in Figure 6.9.2 are just portions of the Xilinx Virtex FPGA in the middle of the board. Th e four PHY chips
in Figure 6.9.2 are the four black squares just to the right of the four white rectangles on the left edge of the
board, which is where the Ethernet cables are plugged in.

 6.9 Communicating to the Outside World: Cluster Networking 6.9-3

wires, which was called a parallel bus . PCIe allows anywhere from one to 32 lanes
to be used to connect to I/O devices, depending on its needs. Th is NIC uses PCI
1.1, so each lane transfers at 2 Gigabits/second.

 Th e NIC in Figure 6.9.1 connects to the host computer over an eight-lane PCIe
link, which off ers 16 Gigabits/second in both directions. To communicate, a NIC
must both send or transmit messages and receive them, oft en abbreviated as TX
and RX, respectively. For this NIC, each 10 G link uses separate transmit and receive
queues, each of which can store two full-length Ethernet packets, used between the
Ethernet links and the NIC. Figure 6.9.2 is a block diagram of the NIC showing the
TX and RX queues. Th e NIC also has two 32-entry queues for transmitting and
receiving between the host computer and the NIC.

 To give a command to the NIC, the processor must be able to address the device
and to supply one or more command words. In memory-mapped I/O , portions of
the address space are assigned to I/O devices. During initialization (at boot time),
PCIe devices can request to be assigned an address region of a specifi ed length.
All subsequent processor reads and writes to that address region are forwarded
over PCIe to that device. Reads and writes to those addresses are interpreted as
commands to the I/O device.

 For example, a write operation can be used to send data to the network interface
where the data will be interpreted as a command. When the processor issues the
address and data, the memory system ignores the operation because the address
indicates a portion of the memory space used for I/O. Th e NIC, however, sees the
operation and records the data. User programs are prevented from issuing I/O
operations directly, because the OS does not provide access to the address space
assigned to the I/O devices, and thus the addresses are protected by the address
translation. Memory-mapped I/O can also be used to transmit data by writing or
reading to select addresses. Th e device uses the address to determine the type of
command, and the data may be provided by a write or obtained by a read. In any
event, the address encodes both the device identity and the type of transmission
between processor and device.

 memory-mapped
I/O An I/O scheme in
which portions of the
address space are assigned
to I/O devices, and reads
and writes to those
addresses are interpreted
as commands to the I/O
device.

PCIe

TX

RX

DMA

MAC

MAC

MAC

MAC

PHY

PHY

PHY

PHY Port 0

Port 1

Port 2

Port 3

Control
Data

 FIGURE 6.9.2 Block diagram of the NetFPGA Ethernet card in Figure 6.9.1 showing the
control paths and the data paths. Th e control path allows the DMA engine to read the status of the
queues, such as empty vs. on-empty, and the content of the next available queue entry. Th e DMA engine also
controls port multiplexing. Th e data path simply passes through the DMA block to the TX/RX queues or
to main memory. Th e “MAC chips” are described below. Th e PHY chips, which refer to the physical layer,
connect the “MAC chips” to physical networking medium, such as copper wire or optical fi ber.

6.9-4 6.9 Communicating to the Outside World: Cluster Networking

 While the processor could transfer the data from the user space into the I/O
space by itself, the overhead for transferring data from or to a high-speed network
could be intolerable, since it could consume a large fraction of the processor. Th us,
computer designers long ago invented a mechanism for offl oading the processor and
having the device controller transfer data directly to or from the memory without
involving the processor. Th is mechanism is called direct memory access (DMA).

 DMA is implemented with a specialized controller that transfers data between
the network interface and memory independent of the processor, and in this case
the DMA engine is inside the NIC.

 To notify the operating system (and eventually the application that will receive
the packet) that a transfer is complete, the DMA sends an I/O interrupt .

 An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5 , with two
important distinctions:

 1. An I/O interrupt is asynchronous with respect to the instruction execution.
Th at is, the interrupt is not associated with any instruction and does not
prevent the instruction completion, so it is very diff erent from either page fault
exceptions or exceptions such as arithmetic overfl ow. Our control unit needs
only to check for a pending I/O interrupt at the time it starts a new instruction.

 2. In addition to the fact that an I/O interrupt has occurred, we would like to
convey further information, such as the identity of the device generating
the interrupt. Furthermore, the interrupts represent devices that may have
diff erent priorities and whose interrupt requests have diff erent urgencies
associated with them.

 To communicate information to the processor, such as the identity of the device
raising the interrupt, a system can use either vectored interrupts or an exception
identifi cation register, called the Exception Syndrome Register or ESR in LEGv8
(see Section 4.9). When the processor recognizes the interrupt, the device can
send either the vector address or a status fi eld to place in the Cause register. As
a result, when the OS gets control, it knows the identity of the device that caused
the interrupt and can immediately interrogate the device. An interrupt mechanism
eliminates the need for the processor to keep checking the device and instead
allows the processor to focus on executing programs.

 The Role of the Operating System in Networking
 Th e operating system acts as the interface between the hardware and the program
that requests I/O. Th e network responsibilities of the operating system arise from
three characteristics of networks:

 1. Multiple programs using the processor share the network.

 2. Networks oft en use interrupts to communicate information about the
operations. Because interrupts cause a transfer to kernel or supervisor mode,
they must be handled by the operating system (OS).

 direct memory access
(DMA) A mechanism
that provides a device
controller with the ability
to transfer data directly
to or from the memory
without involving the
processor.
 interrupt-driven
I/O An I/O scheme that
employs interrupts to
indicate to the processor
that an I/O device needs
attention.

 6.9 Communicating to the Outside World: Cluster Networking 6.9-5

 3. Th e low-level control of a network is complex, because it requires managing
a set of concurrent events and because the requirements for correct device
control are oft en very detailed.

 Th ese three characteristics of networks specifi cally and I/O systems in general lead
to several diff erent functions the OS must provide:

 ■ Th e OS guarantees that a user’s program accesses only the portions of an I/O
device to which the user has rights. For example, the OS must not allow a
program to read or write a fi le on disk if the owner of the fi le has not granted
access to this program. In a system with shared I/O devices, protection could
not be provided if user programs could perform I/O directly.

 ■ Th e OS provides abstractions for accessing devices by supplying routines that
handle low-level device operations.

 ■ Th e OS handles the interrupts generated by I/O devices, just as it handles the
exceptions generated by a program.

 ■ Th e OS tries to provide equitable access to the shared I/O resources, as well
as schedule accesses to enhance system throughput.

 Th e soft ware inside the operating system that interfaces to a specifi c I/O device
like this NIC is called a device driver . Th e driver for this NIC follows fi ve steps
when transmitting or receiving a message. Figure 6.9.3 shows the relationship of
these steps as an Ethernet packet is sent from one node of the cluster and received
by another node in the cluster.

 device driver A program
that controls an I/O device
that is attached to the
computer.

Hardware/
Software
Interface

 First, the transmit steps:

 1. Th e driver fi rst prepares a packet buff er in host memory. It copies a packet
from the user address space into a buff er that it allocates in the operating
system address space.

 2. Next, it “talks” to the NIC. Th e driver writes an I/O descriptor to the
appropriate NIC register that gives the address of the buff er and its length.

 3. Th e DMA in the NIC next copies the outgoing Ethernet packet from the host
buff er over PCIe.

 4. When the transmission is complete, the DMA interrupts the processor to
notify the processor that the packet has been successfully transmitted.

 5. Finally, the driver de-allocates the transmit buff er.

6.9-6 6.9 Communicating to the Outside World: Cluster Networking

 Next, the receive steps:

 1. First, the driver prepares a packet buff er in host memory, allocating a new
buff er in which to place the received packet.

 2. Next, it “talks” to the NIC. Th e driver writes an I/O descriptor to the
appropriate NIC register that gives the address of the buff er and its length.

 3. Th e DMA in the NIC next copies the incoming Ethernet packet over PCIe
into the allocated host buff er.

 4. When the transmission is complete, the DMA interrupts the processor to
notify the host of the newly received packet and its size.

 5. Finally, the driver copies the received packet into the user address space.

 As you can see in Figure 6.9.3 , the fi rst three steps are time-critical when transmitting
a packet (since the last two occur aft er the packet is sent), and the last three steps
are time-critical when receiving a packet (since the fi rst two occur before a packet
arrives). However, these non-critical steps must be completed before individual
nodes run out of resources, such as memory space. Failure to do so negatively
aff ects network performance.

Source

Step 1

Step 2

Step 3

Step 3

NIC

CPU
RAM

Step 2

Step 1

Step 4

Step 5

Destination

Ethernet

Step 4

Step 5RAM

CPU

NIC
PCIe

PCIe

 FIGURE 6.9.3 Relationship of the fi ve steps of the driver when transmitting an Ethernet
packet from one node and receiving that packet on another node.

 6.9 Communicating to the Outside World: Cluster Networking 6.9-7

 Improving Network Performance
 Th e importance of networking in clusters means it is certainly worthwhile to try to
improve performance. We show both soft ware and hardware techniques.

 Starting with soft ware optimizations, one performance target is reducing the
number of times the packet is copied, which you may have noticed happening
repeatedly in the fi ve steps of the driver above. Th e zero-copy optimization allows
the DMA engine to get the message directly from the user program data space
during transmission and be placed where the user wants it when the message is
received, rather than go through intermediary buff ers in the operating system
along the way.

 A second soft ware optimization is to cut out the operating system almost entirely
by moving the communication into the user address space. By not invoking the
operating system and not causing a context switch, we can reduce the soft ware
overhead considerably.

 In this more radical scenario, a third step would be to drop interrupts. One
reason is that modern processors normally go into lower power mode while
waiting for an interrupt, and it takes time to come out of low power to service the
interrupt as well for the disruption to the pipeline, which increases latency. Th e
alternative to interrupts is for the processor to periodically check status bits to see
if I/O operation is complete, which is called polling . Hence, we can require the user
program to poll the NIC continuously to see when the DMA unit has delivered a
message, and as a side eff ect the processor does not go into low-power mode.

 Looking at hardware optimizations, one potential target for improvement is
in calculating the values of the fi elds of the Ethernet packet. Th e 48-bit Ethernet
address, called the Media Access Control address or MAC address , is a unique
number assigned to each Ethernet NIC. To improve performance, the “MAC
chip”—actually just a portion of the FPGA on this NIC—calculates the value for
the preamble fi elds and the CRC fi eld (see Section 5.5). Th e driver is left with
placing the MAC destination address, MAC source address, message type, the
data payload, and padding if needed. (Ethernet requires that the minimum packet,
including the header and CRC fi elds but not the preamble, be 64 bytes.) Note that
even the least expensive Ethernet NICs do CRC calculation in hardware today.

 A second hardware optimization, available on the most recent Intel processors
such as Ivy Bridge, improves the performance of the NIC with respect to the memory
hierarchy. Direct Data IO (DDIO) allowing up to 10% of the last-level cache is used
as a fast scratchpad for the DMA engine. Data are copied directly into the last-level
cache rather than to DRAM by the DMA, and only written to DRAM upon eviction
from the cache. Th is optimization helps with latency, but also with bandwidth; some
memory regions used for control might be written by the NIC repeatedly, and these
writes no longer need to go to DRAM. Th us, DDIO off ers benefi ts similar to those
of a write back cache versus a write through cache (Chapter 5).

 Let’s look at an object store that follows a client-server architecture and uses most
of the optimizations above: zero copy messaging, user space communication, polling
instead of interrupts, and hardware calculation of preamble and CRC. Th e driver

 polling Th e process of
periodically checking the
status of an I/O device
to determine the need to
service the device.

6.9-8 6.9 Communicating to the Outside World: Cluster Networking

operates in user address space as a library that the application invokes. It grants this
application exclusive and direct access to the NIC. All of the I/O register space on the
NIC is mapped into the application, and all of the driver state is kept in the application.
Th e OS kernel doesn’t even see the NIC as such, which avoids the overheads of context
switching, the standard kernel network soft ware stack, and interrupts.

 Figure 6.9.4 shows the time to send an object from one node to another. It varies
from about 9.5 to 12.5 microseconds, depending on the size of the object. Here is
the time for each step in microseconds:

 0.7 – for the client “driver” (library) to make the request (Driver TX in Figure 6.9.4).

 6.4 to 8.7 – for the NIC hardware to transmit the client’s request over the PCIe bus
to the Ethernet, depending on the size of the object (NIC TX).

 0.02 – to send object over the 10 G Ethernet (Time of Flight). Th e time of fl ight
is limited by speed of light to 5 ns per meter. Th e three-meter cables used in this
measurement mean the time of fl ight is 15 ns, which is too small to be clearly visible
in the fi gure.

0

2

4

6

8

10

12

14

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

L
at

en
cy

 (
m

ic
ro

se
co

n
d

s)

Object Size (B)

Driver RX
NIC RX
Time of Flight
NIC TX
Driver TX

 FIGURE 6.9.4 Time to send an object broken into transmit driver and NIC hardware time
vs. receive driver and NIC hardware time. NIC transmit time is much larger than the NIC receive
time because transmit requires more PCIe round-trips. Th e NIC does PCIe reads to read the descriptor and
data, but on receive the NIC does PCIe writes of data, length of data, and interrupt. PCIe reads incur a round
trip latency because NIC waits for the reply, but PCIe writes require no response because PCIe is reliable, so
PCIe writes can be sent back-to-back.

 6.9 Communicating to the Outside World: Cluster Networking 6.9-9

 1.8 to 2.5 – for the NIC hardware to receive the object, depending on its size
(NIC RX).

 0.6 – for the server “driver” to transmit the message with the requested object to
the app (Driver RX).

 Now that we have seen how to measure the performance of network at a low
level of detail, let’s raise the perspective to see how to benchmark multiprocessors
of all kinds with much higher-level programs.

 Elaboration There are three versions of PCIe. This NIC uses PCIe 1.1, which transfers
at 2 gigabits per second per lane, so this NIC transfers at up to 16 gigabits per second
in each direction. PCIe 2.0, which is found on most PC motherboards today, doubles
the lane bandwidth to 4 gigabits per second. PCIe 3.0 doubles again to 8 gigabits per
second, and it is starting to be found on some motherboards. We applaud the standard
committee’s logical rate of bandwidth improvement, which has been about 2 version number
gigabits/second. The limitations of the Virtex 5 FPGA prevented the NIC from using
faster versions of PCIe.

 Elaboration While Ethernet is the foundation of cluster communication, clusters
commonly use higher-level protocols for reliable communication. Transmission Control
Protocol and Internet Protocol (TCP/IP), although invented for planet-wide communication,
is often used inside a warehouse-scale computer, due in part to its dependability. While
IP makes no delivery guarantees in the protocol, TCP does. The sender keeps the packet
sent until it gets the acknowledgment message back that it was received correctly from
the receiver. The receiver knows that the message was not corrupted along the way, by
double-checking the contents with the TCP CRC fi eld. To ensure that IP delivers to the right
destination, the IP header includes a checksum to make sure the destination number
remains unchanged. The success of the Internet is due in large part to the elegance
and popularity of TCP/IP, which allows independent local-area networks to communicate
dependably. Given its importance in the Internet and in clusters, many have accelerated
TCP/IP, using techniques like those listed in this section [Regnier, 2004].

 Elaboration Adding DMA is another path to the memory system—one that does not
go through the address translation mechanism or the cache hierarchy. This difference
generates some problems both in virtual memory and in caches. These problems are
usually solved with a combination of hardware techniques and software support. The
diffi culties in having DMA in a virtual memory system arise because pages have both
a physical and a virtual address. DMA also creates problems for systems with caches,
because there can be two copies of a data item: one in the cache and one in memory.
Because the DMA issues memory requests directly to the memory rather than through
the processor cache, the value of a memory location seen by the DMA unit and the
processor may differ. Consider a read from a NIC that the DMA unit places directly
into memory. If some of the locations into which the DMA writes are in the cache, the
processor will receive the old value when it does a read. Similarly, if the cache is write-
back, the DMA may read a value directly from memory when a newer value is in the

6.9-10 6.9 Communicating to the Outside World: Cluster Networking

cache, and the value has not been written back. This is called the stale data problem or
coherence problem (see Chapter 5). Similar solutions for coherence are used with DMA.

 Elaboration Virtual Machine support clearly can negatively impact networking
performance. As a result, microprocessor designers have been adding hardware
to reduce the performance overhead of virtual machines for networking in particular
and I/O in general. Intel offers Virtualization Technology for Directed I/O (VT-d) to help
virtualize I/O. It is an I/O memory management unit that enables guest virtual machines
to directly use I/O devices, such as Ethernet. It supports DMA remapping , which allows
the DMA to read or write the data directly in the I/O buffers of the guest virtual machine,
rather than into the host I/O buffers and then copy them into the guest I/O buffers. It
also supports interrupt remapping , which lets the virtual machine monitor route interrupt
requests directly to the proper virtual machine.

 Two options for networking are using interrupts or polling, and using DMA or
using the processor via load and store instructions.

 1. If we want the lowest latency for small packets, which combination is likely
best?

 2. If we want the lowest latency for large packets, which combination is likely
best?

Check
Yourself

